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We study the effect of physical aging on the mechanical properties of a model polymer glass using molecular
dynamics simulations. The creep compliance is determined simultaneously with the structural relaxation under
a constant uniaxial load below yield at constant temperature. The model successfully captures universal fea-
tures found experimentally in polymer glasses, including signatures of mechanical rejuvenation. We analyze
microscopic relaxation time scales and show that they exhibit the same aging characteristics as the macroscopic
creep compliance. In addition, our model indicates that the entire distribution of relaxation times scales
identically with age. Despite large changes in mobility, we observe comparatively little structural change
except for a weak logarithmic increase in the degree of short-range order that may be correlated with an
observed decrease in aging with increasing load.
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I. INTRODUCTION

Glassy materials are unable to reach equilibrium over
typical experimental time scales �1–3�. Instead, the presence
of disorder at temperatures below the glass transition permits
only a slow exploration of the configurational degrees of
freedom. The resulting structural relaxation, also known as
physical aging �4�, is one of the hallmarks of glassy dynam-
ics and leads to material properties that depend on the wait
time tw since the glass was formed. While thermodynamic
variables such as energy and density typically evolve only
logarithmically, the relaxation times grow much more rapidly
with wait time �3–5�.

Aging is a process observed in many different glassy sys-
tems, including colloidal glasses �6�, microgel pastes �7�, and
spin glasses �8�, but is most frequently studied in polymers
due to their good glass-forming ability and ubiquitous use in
structural applications. Of particular interest is therefore to
understand the effect of aging on their mechanical response
during plastic deformation �5�. In a classic series of experi-
ments, Struik �4� studied many different polymer glasses and
determined that their stiffness universally increases with wait
time. However, it has also been found that large mechanical
stimuli can alter the intrinsic aging dynamics of a glass.
Cases of both decreased aging �rejuvenation� �4� and in-
creased aging �overaging� �9,10� have been observed, but the
interpretation of these findings in terms of the structural evo-
lution remains controversial �11,12�.

The formulation of a comprehensive molecular model of
the nonequilibrium dynamics of glasses has been impeded by
the fact that minimal structural change occurs during aging.
Traditional interpretations of aging presume that structural
relaxation is accompanied by a decrease in free volume
available to molecules and an associated reduction in mo-
lecular mobility �4�. While this idea is intuitive, it suffers
from several limitations. First, the free volume has been no-
toriously difficult to define experimentally. Also, this model
does not seem compatible with the observed aging in glassy

solids under constant volume conditions �13�, and cannot
predict the aging behavior under complex thermomechanical
histories. Modern energy landscape theories describe the ag-
ing process as a series of hops between progressively deeper
traps in configuration space �14,15�. These models have had
some success in capturing experimental trends, but have yet
to directly establish a connection between macroscopic ma-
terial response and the underlying molecular level processes.
Recent efforts to formulate a molecular theory of aging are
promising but require knowledge of how local density fluc-
tuations control the relaxation times in the glass �16�.

Molecular simulations using relatively simple models of
glass forming solids, such as the binary Lennard-Jones glass
�17� or the bead spring model �18� for polymers, have shown
rich aging phenomenology. For instance, calculations of par-
ticle correlation functions have shown explicitly that the
characteristic time scale for particle relaxations increases
with wait time �19�. Recent work �13,20� has focused on the
effect of aging on the mechanical properties; results showed
that the shear yield stress �defined as the overshoot or maxi-
mum of the stress-strain curve� in deformation at constant
strain rate generally increases logarithmically with tw. Based
on a large number of simulations at different strain rates and
temperatures, a phenomenological rate-state model was de-
veloped that describes the combined effect of rate and age on
the shear yield stress for many temperatures below the glass
transition �21�.

In contrast to the strain-controlled studies described
above, experiments on aging typically impose a small, con-
stant stress and measure the resulting creep as a function of
time and tw �4�. In this study, we perform molecular dynam-
ics simulations on a coarse grained, glass forming polymer
model in order to investigate the relationship between mac-
roscopic creep response and microscopic structure and dy-
namics. In Sec. III A, we determine creep compliance curves
for different temperatures and applied loads �in the sub-yield
regime� and find that, as in experiments, curves for different
ages can be superimposed by rescaling time. The associated
shift factors exhibit a power-law dependence on the wait
time, and the effect of aging can be captured by an effective
time as originally envisioned by Struik �4�. In Sec. III B, we
compute microscopic mobilities and the full spectrum of re-*mya@phas.ubc.ca
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laxation times and show their relationship to the creep re-
sponse. Additionally, we study several parameters that are
sensitive to the degree of short-range order in Sec. III C. We
detect very little evolution toward increased local order in
our polymer model, indicating that short range order is not a
sensitive measure of the mechanical relaxation times respon-
sible for the creep compliance of glassy polymers.

II. SIMULATIONS

We perform molecular dynamics �MD� simulations with a
well-known model polymer glass on the bead-spring level.
The beads interact via a nonspecific van der Waals interac-
tion given by a 6–12 Lennard-Jones potential, and the cova-
lent bonds are modeled with a stiff spring that prevents chain
crossing �22�. This level of modeling does not include
chemical specificity, but allows us to study longer aging
times than a fully atomistic model and seems appropriate to
examine a universal phenomenon found in all glassy poly-
mers. All results will be given in units of the diameter a of
the bead, the mass m, and the Lennard-Jones energy scale,
u0. The characteristic time scale is therefore �LJ=�ma2 /u0,
and the pressure and stress are in units of u0 /a3. The
Lennard-Jones interaction is truncated at 1.5a and adjusted
vertically for continuity. All polymers have a length of 100
beads. This length is only slightly longer than the entangle-
ment length for this model, but Ref. �23� showed that the
chain length has little effect on the initial yield behavior.
While entanglement effects become important for strain
hardening in the post-yield regime �24�, we limit this study
to much smaller strains. Unless otherwise noted, we analyze
870 polymers in an initially cubic, periodic simulation box.
Results are obtained either with one large simulation contain-
ing the full number of polymers, or with several smaller
simulations, each starting from a unique configuration,
whose results are averaged. The large simulations and the
averaged small simulations provide identical results. The
small simulations are used to estimate uncertainties caused
by the finite size of the simulation volume.

To create the glass, we begin with a random distribution
of chains and relax in an ensemble at constant volume and at
a melt temperature of 1.2u0 /kB. Once the system is fully
equilibrated, it is cooled over 750�LJ to a temperature below
the glass transition at Tg�0.35u0 /kB �25�. The density of the
melt is chosen such that after cooling the pressure is zero.
These densities are 1.00a−3 and 0.98a−3 at glass temperatures
of 0.2u0 /kB and 0.3u0 /kB, respectively. We then switch to an
NPT ensemble—the pressure and temperature are controlled
via a Nosé-Hoover thermostat-barostat—with zero pressure,
and let the system age for various wait times �tw� between
500 and 75 000�LJ. The aged samples undergo a computer
creep experiment where a uniaxial tensile stress �in the z
direction� is ramped up quickly over 75�LJ and then held
constant at a value of � while the strain �=�Lz /Lz is moni-
tored. After an initial elastic deformation, the glass slowly
elongates in the direction of applied stress due to structural
relaxations. In the two directions perpendicular to the applied
stress, the pressure is maintained at zero.

III. RESULTS

A. Macroscopic mechanical deformation

Historically, measurements of the creep compliance have
been instrumental in probing the relaxation dynamics of
glasses, and continue to be the preferred tool in investigating
the aging of glassy polymers �15,26,27�. In his seminal work
on aging in polymer glasses, Struik �4� performed an exhaus-
tive set of creep experiments on different materials, varying
the temperature and the applied load. In this section, we per-
form a similar set of experiments with our model polymer
glass.

The macroscopic creep compliance is defined as

J�t,tw� =
��t,tw�

�
. �1�

Compliance curves J�t , tw� for several temperatures and
stresses were obtained as a function of wait time since the
quench; representative data are shown in Fig. 1. The curves
for different wait times appear similar and agree qualitatively
with experiment. An initially rapid rise in compliance crosses
over into a slower, logarithmic increase at long times. The
crossover between the two regimes increases with increasing
wait time. Struik showed that experimental creep compliance
curves for different ages can be superimposed by rescaling
the time variable by a shift factor aJ,

J�t,tw� = J�taJ,tw� � . �2�

This result is called time-aging time superposition �4,5�.
Simulated creep compliance curves from Fig. 1 can similarly
be superimposed, and the resulting master curve is shown in
Fig. 2. Note that the shifts are arbitrary up to a multiplicative
constant. In this study, we use Struik’s convention, which is
to superimpose all of the curves on the creep compliance of
the oldest sample.
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FIG. 1. �Color online� Simulated creep compliance J�t , tw� at a
glassy temperature of T=0.2u0 /kB for various wait times tw �indi-
cated in the legend in units of �LJ�. A uniaxial load of �a� �
=0.4u0 /a3 and �b� �=0.5u0 /a3 is applied to the aged glasses. The
strain during creep is monitored over time to give the creep
compliance.
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Shift factors required for this data collapse are plotted vs
the wait time in Fig. 3. All data fall along a straight line in
the double-logarithmic plot, clearly indicating power law be-
havior:

aJ � tw
−�. �3�

This power law in the shift factor is characteristic of aging. �
is called the aging exponent, and has been found experimen-

tally to be close to unity for a wide variety of glasses in a
temperature range near Tg �4�.

If this analysis is repeated at a higher temperature, T
=0.3u0 /kB, we obtain qualitatively different results. Creep
compliance curves still exhibit aging, but only superimpose
for small strains. Shift factors obtained from the small strain
region of the creep compliance curves are also plotted in Fig.
3, and obey a power law similar to the T=0.2u0 /kB data. This
behavior is most likely due to the fact that the applied
stresses are now very close to or exceed the dynamical yield
stress. From earlier work �25�, estimates for the uniaxial
yield stress are 0.2u0 /a3 at T=0.3u0 /kB and 0.5u0 /a3 at T
=0.2u0 /kB, respectively. Indeed, creep compliance curves for
�=0.4u0 /a3, shown in Fig. 4 for different wait times, even-
tually converge in a flow regime, where the compliance rises
linearly with time, and aging effects are no longer observ-
able. At lower stresses, the flow regime is not visible on the
time scale of the simulation.

Figure 5 summarizes the effect of stress and temperature
on the aging exponent, as determined from linear fits to the
data in Fig. 3. At T=0.2u0 /kB, � is close to 1 for small
stresses, but decreases strongly with stress. This effect has
frequently been established by experiments and has been
called “mechanical rejuvenation,” as the relative decrease in
relaxation times due to stress yields a state resembling a
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FIG. 2. �Color online� The data from Fig. 1 are shown with the
curves shifted by aJ�tw� to form a master curve. Curves labeled �a�
correspond to �=0.4u0 /a3, and �b� to �=0.5u0 /a3. The dashed
lines are fits to the master curves using the effective time formula-
tion Eqs. �4� and �5�, and the dotted line is a short-time fit for
comparison �see text�. The transition from short-time to long-time
regime occurs at tw

�, here shown for an exponent � that corresponds
to �=0.5u0 /a3 �dash-dotted line�.
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FIG. 3. �Color online� Plot of the shift factors found by super-
imposing the creep compliance curves aJ �circles�, the mean-
squared displacement curves aMSD �triangles�, and the incoherent
scattering function curves aC ��� at different wait times �see text�.
The solid lines are linear fits to the data. Temperature and stress are
in units of u0 /kB and u0 /a3, respectively.
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FIG. 4. �Color online� Plot of the creep compliance curves for
T=0.3u0 /kB and �=0.4u0 /a3 at wait times from 750�LJ to
75 000�LJ �left to right� as in Fig. 1�b�.
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FIG. 5. The aging exponent � determined from the slopes of
log10�aJ� vs log10�tw� �from Fig. 3� plotted vs stress �open symbols�.
The solid symbols at zero stress refer to shift factors determined
from aMSD �Eq. �7�� and aC �Eq. �6�� data only. The dashed lines are
guides to the eye. Temperatures are in units of u0 /kB.
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younger glass �4,28�. However, recent studies suggest that
the effect of mechanical perturbation on a glass is not as
simple as the rejuvenation hypothesis would suggest. For
instance, in strain-controlled experiments, overaging, or an
increase in relaxation times, has been observed as well
�9,10�. The structural origins of this effect are not well un-
derstood �11,12�.

In contrast, the aging exponent at T=0.3u0 /kB exhibits
virtually no dependence on the stress. It is interesting that the
exponents for the short-time creep almost exactly match the
aging exponent at zero stress measured via the microscopic
dynamics �discussed below�. It seems that the onset of creep
is determined primarily by the state of the system before the
mechanical perturbation. The aging exponents are also some-
what lower at T=0.3u0 /kB than at T=0.2u0 /kB, probably due
to the proximity to the glass transition temperature. Experi-
ments have shown that � decreases rapidly to zero at Tg �4�.

The relatively simple relationship between shift factors
and wait time permits construction of an expression that de-
scribes the entire master curve in Fig. 2. For creep times that
are short compared to the wait time—such that minimal
physical aging occurs over the time scale of the
experiment—experimental creep compliance curves can be
fit to a stretched exponential �typical of processes with a
spectrum of relaxation times�,

J�t� = J0 exp��t/t0�m� , �4�

where t0 is the retardation factor, and the exponent m has
been found to be close to 1/3 for most glasses �4�. A fit of
this expression to our simulated creep compliance curves is
shown in Fig. 2 �dotted line�. This expression is clearly only
consistent with the data in the short-time regime. At times
much longer than tw

� �dash-dot line�, the creep compliance
varies more slowly due to the stiffening caused by aging
during the course of the experiment. Struik suggested that
Eq. �4� could be extended to the long-time creep regime,
where the experimental time scale may be longer than the
wait time, by introducing an effective time to account for the
slowdown in the relaxation time scales:

teff = �
0

t 	 tw

tw + t�

�

dt�. �5�

Upon replacing t with teff, Eq. �4� may be used to describe
the entire experimental creep curve. Creep compliance
curves from Fig. 2 can indeed be fit to this form �dashed
lines� for a known wait time tw and aging exponent � as
obtained from the master curve. We find m�0.5±0.1 for all
stresses at T=0.2u0 /kB, and a relatively broad range of val-
ues for J0 and t0 are consistent with the data. For the simple
thermomechanical history prescribed by the creep experi-
ment, Struik’s effective time formulation appears to work
quite well.

The present results parallel those of a recent simulation
study of the shear yield stress in glassy solids �21�. In this
work, the glassy solid was deformed at constant strain rate,
and two different regimes of strong and weak rate depen-
dence emerged depending on the time to reach the yield
point relative to the wait time. In order to rationalize these

results, a rate-state model was developed that accounted for
the internal evolution of the material with age through a
single state variable ��t�. This formulation successfully col-
lapses yield stress data for different ages and strain rates in a
universal curve by adapting the evolution of the state vari-
able during the strain interval. We note here that this state
variable is closely related to Struik’s effective time, as it tries
to subsume the modified aging dynamics during deformation
in a single variable and, in particular, easily includes the
effects of overaging or rejuvenation.

B. Microscopic dynamics

The aging behavior of the simulated mechanical response
functions agrees remarkably well with experiment. Addi-
tional microscopic information from simulations allows us to
obtain more directly the relevant time scales of the system,
and the relevant microscopic processes responsible for aging.
One parameter which has been useful in studying glassy dy-
namics is the “self” part of the incoherent scattering factor
�19�,

Cq�t,tw� =
1

N
�
j=1

N

exp�iq� · �r� j�tw + t� − r� j�tw�� , �6�

where r� j is the position of the jth atom, and q� is the wave
vector. Cq curves as a function of age are shown in Fig. 6 and
exhibit three distinct regions. Initially, Cq decreases as par-
ticles make very small unconstrained excursions about their
positions. There follows a long plateau, where the correlation
function does not change considerably. In this regime, atoms
are not free to diffuse, but are trapped in local cages formed
by their nearest neighbors. The plateau region ends when
particles finally escape from local cages �the 	-relaxation
time�, and larger atomic rearrangements begin to take place.
The 	-relaxation time corresponds closely to the transition
from short-time to long-time regime observed in the creep
compliance. Structural rearrangements taking place in the
	-relaxation regime are clearly associated with the continued
aging observed in the creep compliance, as well as plastic
deformations occurring in that region.
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FIG. 6. �Color online� Incoherent scattering factor �Eq. �6�� for
different wait times measured under the same loading conditions as
in Fig. 1�a� for q= �0,0 ,2
�. The inset shows the master curve
created by rescaling the time variable by aC �the scale of the inset is
the same as the scale of the main figure�. Symbols are as in Fig.
1�b�.
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The correlation functions for different ages are similar in
form, but the time spent in the plateau region increases with
age. Just as creep compliance curves can be shifted in time to
form a master curve, we may overlap the long-time, cage-
escape regions of Cq by rescaling the time variable of the
correlation data at different ages �see inset of Fig. 6�. The
corresponding shift factors aC�tw� are also shown in Fig. 3,
where we see that the increase in cage time with age follows
the same power law as the shift factors of the creep compli-
ance. The scaling behavior of aC with wait time is qualita-
tively similar to that found in �19�, where aging was studied
in the absence of loading.

The real space quantity corresponding to Cq is the mean
squared displacement,

�r��t,tw�2� =
1

N
�
j=1

N

�r� j�t,tw�2, �7�

where �r� j�t , tw�=r� j�tw+ t�−r� j�tw�. This function is shown in
Fig. 7. Again we see three characteristic regions of uncon-
strained �ballistic�, caged, and cage-escape behavior. The de-
parture from the cage plateau likewise increases with age,
and a master curve can be constructed by shifting the curves
with a factor aMSD �see inset of Fig. 7�. Shift factors aMSD are
plotted in Fig. 3, along with shifts for creep compliance and
incoherent scattering function. As anticipated, the shifts vs
wait time for ��r2� fully agree with those obtained from Cq

and J. This clearly demonstrates that for our model, the
	-relaxation time is indeed the controlling factor in the aging
dynamics of the mechanical response functions.

Additional information about microscopic processes can
be obtained by studying not only the mean of the displace-
ments, but also the full spectrum of relaxation dynamics as a
function of time and wait time. To this end, we measure the
probability distribution P(�r�t , tw�2) of atomic displacements
during time intervals t for glasses at various ages tw. This
quantity is complementary to the measurements of dynami-
cal heterogeneities detailed in �29�, where the spatial varia-
tions of the vibrational amplitudes were measured at a snap-

shot in time to show the correlations of mobile particles in
space. In our study, we omit the spatial information, but re-
tain all of the dynamical information.

Representative distribution functions are shown in Fig. 8
for a constant wait time of tw=500�LJ and various time in-
tervals t. The distributions were obtained from a smaller sys-
tem of only 271 polymer chains due to memory constraints.
The data do not reflect a simple Gaussian distribution, but
clearly exhibits the presence of two distinct scales: there is a
narrow distribution of caged particles and a wider distribu-
tion of particles that have escaped from their cages. This
behavior can be described by the sum of two Gaussian peaks,

P��r2� = N1 exp	− �r2

�1
2 
 + N2 exp	− �r2

�2
2 
 . �8�

Deviations from purely Gaussian behavior are common in
glassy systems and are a signature of dynamical heterogene-
ities �29,30�. Experiments on colloidal glasses �31� show a
similar separation of displacement distributions into fast and
slow particles.

A fit of the normalized distributions to Eq. �8� �dashed
lines in Fig. 8� requires adjustment of three parameters: the
variance of caged and mobile particle distributions, �1

2 and
�2

2, as well as their relative contributions N1 /N, where N
=N1+N2. These parameters are sufficient to describe the full
evolution of the displacement distribution during aging. In
Fig. 9, we show the fit parameters as a function of time and
wait time. Again two distinct time scales are evident. At
short times, most of the particles are caged �N1 /N�1�, and
the variance of the cage peak is also changing very little.
There are few rearrangements in this regime, however, Fig.
9�c� shows that a small fraction of particles are mobile at
even the shortest times. At the 	-relaxation time, the number
of particles in the cage peak begins to rapidly decay, and the
variance of the cage peak increases. This indicates that the
cage has become more malleable—small, persistent rear-
rangements occur leading to eventual cage escape. In this
regime, the variance of the mobile peak increases very little.
Note that the typical length scale of rearrangements is less

10
−2

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

t (τ
LJ

)

<
∆r

2 >
(a

2 )

a
MSD

t (τ
LJ

)
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than a particle diameter even in the cage escape regime, but
the number of particles undergoing rearrangements changes
by more than 50%.

Similar to the compliance and mean-squared displacement
curves, the data in Figs. 9�a� and 9�b� can also be superim-
posed by shifting time. Figure 10 shows that the shift factors
for N1 /N and �1

2 coincide exactly with shifts for the mean;
however, data for �2

2 �Fig. 9�c�� seems to be much less af-
fected by the wait time. The aging dynamics appears to be
entirely determined by the cage escape process, and not by
larger rearrangements within the glass.

Since the fit parameters exhibit the same scaling with wait
time as the mean, one might expect that the entire distribu-
tion of displacements under finite load scales with the evo-
lution of the mean. In Fig. 11, we plot displacement distri-
butions for several wait times at time intervals chosen such

that the mean squared displacements are identical �see inset�.
Indeed, we find that all curves overlap, indicating that the
entire relaxation spectrum ages in the same way. A similar
observation was recently made in simulations of a model for
a metallic glass aging at zero stress �32�, although in this
study the tails of the distribution were better described by
stretched exponentials.

In order to study the effect of load on the relaxation dy-
namics, we compare in Fig. 12 the fit parameters for a
sample undergoing creep �replotted from Fig. 9� and a refer-
ence sample without load. It is clear that the dynamics are
strongly affected by the applied stress only for times within
the 	-relaxation regime, where the decay in N1 /N and the
widening of the cage peak are accelerated. The stress does
not modify the variance of the mobile peak, confirming again
the importance of local rearrangements as compared to large-
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scale motion in the dynamics of the system. The accelerated
structural rearrangements caused by the stress result in creep
on the macroscopic scale, but may also be responsible for the
modification of the aging dynamics with stress as observed
in Fig. 5.

C. Structural evolution

The connection between the dynamics and the structure of
a glass during aging remains uncertain, mostly because no
structural parameter has been found that strongly depends on
wait time. Recent simulation studies of metallic glasses have
shown the existence of several short range order parameters
that can distinguish between glassy states created through
different quenching protocols �33–35�. A strong correlation
has been found between “ordered” regions of the glass and
strain localization. Many metallic glasses are known to form
quasicrystalline structures that optimize local packing. It re-
mains to be seen whether the short-range order evolves in the
context of aging and in other glass formers such as polymers
and colloids. A recent experimental study of aging in colloi-
dal glasses found no change in the distribution function of a
tetrahedral order parameter �36�. Below, we investigate sev-
eral measures of local order in our model as they evolve with
age and under load.

Since Lennard-Jones liquids are known to condense into a
crystal with fcc symmetry at low temperatures, it is reason-
able to look for the degree of local fcc order in our polymer
model. The level of fcc order can be quantified via the bond
orientational parameter �37�,

Q6 = 	4


13 �
m=−6

6

�Y6m�2
1/2

. �9�

This parameter has been successfully used to characterize the
degree of order in systems of hard sphere glasses. Q6 is
determined for each atom by projecting the bond angles of
the nearest neighbors onto the spherical harmonics,
Y6m�� ,��. The overbar denotes an average over all bonds.
Nearest neighbors are defined as all atoms within a cutoff
radius rc of the central atom. For all of the order parameters
discussed here, the cutoff radius is defined by the first mini-
mum in the pair correlation function, in this case 1.45a. Q6 is
approximately 0.575 for a perfect fcc crystal; for jammed
structures, it can exhibit a large range of values less than
about 0.37 �37�. The full distribution of Q6 for our model
glass is shown for several ages as well as an initial melt state
in Fig. 13�a�. We see that there is very little difference even
between melt and glassy states in our model, and no discern-
ible difference at all with increasing age.

Locally, close packing is achieved by tetrahedral ordering
and not fcc ordering, however, tetrahedral orderings cannot
span the system. The glass formation process has been de-
scribed in terms of frustration between optimal local and
global close-packing structures. To investigate the type of
local ordering in this model, we investigate a three-body an-
gular correlation function P���. � is defined as the internal
angle created by a central atom and individual pairs of near-
est neighbors, and P��� is the probability of occurrence of �.

Results for this correlation are shown in Fig. 13�b�. Two
peaks at approximately 60° and 110° indicate tetrahedral or-
dering. The peaks sharpen under quenching from the melt,
but the distribution does not evolve significantly during ag-
ing. In contrast, simulations of metallic glass formers
showed a stronger sensitivity of this parameter to the quench
protocol �34�, but most of those changes may be due to re-
arrangements in the supercooled liquid state and not in the
glassy state.

Another parameter that has been successful in classifying
glasses is the triangulated surface order parameter �35�,

S = �
q

�6 − q�q, �10�

which measures the degree of quasicrystalline order. The sur-
face coordination number q is defined for each atom of the
coordination shell as the number of neighboring atoms also
residing in the coordination shell; q is the number of atoms
in the coordination shell with surface coordination q. Or-
dered systems have been identified with S equal to 12 �icosa-
hedron�, 14, 15, and 16. Figure 13�c� shows the probability
distribution for P�S� for the melt and for glassy states with
short and long wait times. The peak of the distribution moves
toward lower S �more ordered� upon cooling, and continues
to evolve slowly in the glass. The mean of S relative to the
just-quenched state, ��S�, is shown in Fig. 14 as a function
of wait time at two temperatures. We see that ��S� is a loga-
rithmically decreasing function of wait time. Even though
this is not a strong dependence, this order parameter is sig-
nificantly more sensitive to age than the others that have
been investigated.
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FIG. 13. �Color online� Short-range order parameters for an ag-
ing sample at T=0.2u0 /kB: �a� the bond-orientational parameter, �b�
the three-body angular correlations, �c� the surface triangulated or-
der �see text for discussion�. �’s show the melt state, circles show
the sample aged for tw=500�LJ, and triangles show the sample aged
for 500 000�LJ.
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Figure 14 also shows the change in the order parameter
��S� after the ramped-up stress has been applied to the aged
samples. We can see that at T=0.2u0 /kB, some of the order
that developed during age is erased, while no appreciable
change occurs at the higher temperature T=0.3u0 /kB. These
results correlate well with the behavior of the aging exponent
found in Fig. 5, where mechanical rejuvenation was found at
lower temperatures but was much less pronounced at higher
T. The load is applied very quickly, and most of the defor-
mation in this regime is affine, however, the strain during
this time was similar for both temperatures, therefore the
effect is not simply due to a change in density. More work is
needed to clarify the nature of the structural changes during
rejuvenation.

IV. CONCLUSIONS

We investigate the effects of aging on both macroscopic
creep response and underlying microscopic structure and dy-
namics through simulations on a simple model polymer
glass. The model qualitatively reproduces key experimental
trends in the mechanical behavior of glasses under sustained
stress. We observe a power-law dependence of the relaxation
time on the wait time with an aging exponent of approxi-
mately unity, and a decrease in the aging exponent with in-
creasing load that indicates the presence of mechanical reju-
venation. The model creep compliance curves can be fit in
the short and long-time regimes using Struik’s effective time
formulation. Additionally, investigation of the microscopic

dynamics through two-time correlation functions shows that,
for our model glass, the aging dynamics of the creep com-
pliance exactly corresponds to the increase in the
	-relaxation time.

A detailed study of the entire distribution of particle dis-
placements yields an interesting picture of the microscopic
dynamics during aging. The distribution can be described by
the sum of two Gaussians, reflecting the presence of caged
and mobile particles. The fraction of mobile particles and the
amplitude of rearrangements in the cage strongly increase
with time after the 	-relaxation time. However, in analogy
with results in colloidal glasses �38�, structural rearrange-
ments occur even for times well within the “caged” regime.
For our model glass, we find that the entire distribution of
displacements scales with age in the same way as the mean.
At times when the long-time portion of the mean squared
displacement overlaps, the distribution of displacements at
different wait times completely superimpose, confirming that
all of the mechanical relaxation times scale in the same way
with age.

To characterize the evolution of the structure during ag-
ing, we investigate several measures of short-range order in
our model glass. We find that the short-range order does not
evolve strongly during aging. The triangulated surface order
�35�, however, shows a weak logarithmic dependence on age.
Results also show a change in structure when a load is rap-
idly applied, and this seems to be correlated with an ob-
served decrease in the aging exponent under stress.

This study has characterized the dynamics of a model
glass prepared by a rapid quench below Tg, followed by ag-
ing at constant T and subsequent application of a constant
load. For such simple thermomechanical histories, existing
phenomenological models work well, however, the dynamics
of glasses are in general much more complex. For instance,
large stresses in the nonlinear regime modify the aging dy-
namics and cause nontrivial effects such as mechanical reju-
venation and overaging �10,11�. Also, experiments have
shown that the time-age time superposition no longer holds
when polymer glasses undergo more complex thermal histo-
ries such as a temperature jump �26�. The success of our
study in analyzing simple aging situations indicates that the
present simulation methodology will be able to shed more
light on these topics in the near future.

We thank the Natural Sciences and Engineering Council
of Canada �NSERC� for financial support. Computing time
was provided by WestGrid. Simulations were performed with
the LAMMPS molecular dynamics package �39�.
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